Skip to main content

Options Builder

This lets you build options for the ask() API.

Following are the parameters supported by Ollama:

ParameterDescriptionValue TypeExample Usage
mirostatEnable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)intmirostat 0
mirostat_etaInfluences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1)floatmirostat_eta 0.1
mirostat_tauControls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0)floatmirostat_tau 5.0
num_ctxSets the size of the context window used to generate the next token. (Default: 2048)intnum_ctx 4096
num_gqaThe number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70bintnum_gqa 1
num_gpuThe number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable.intnum_gpu 50
num_threadSets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores).intnum_thread 8
repeat_last_nSets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx)intrepeat_last_n 64
repeat_penaltySets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)floatrepeat_penalty 1.1
temperatureThe temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8)floattemperature 0.7
seedSets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. (Default: 0)intseed 42
stopSets the stop sequences to use. When this pattern is encountered the LLM will stop generating text and return. Multiple stop patterns may be set by specifying multiple separate stop parameters in a modelfile.stringstop "AI assistant:"
tfs_zTail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1)floattfs_z 1
num_predictMaximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context)intnum_predict 42
top_kReduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)inttop_k 40
top_pWorks together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)floattop_p 0.9

Link to source.

Also, see how to set those Ollama parameters using the OptionsBuilder from javadoc.

Build an empty Options object

import io.github.ollama4j.OllamaAPI;
import io.github.ollama4j.utils.Options;
import io.github.ollama4j.utils.OptionsBuilder;

public class Main {

public static void main(String[] args) {

String host = "http://localhost:11434/";

OllamaAPI ollamaAPI = new OllamaAPI(host);

Options options = new OptionsBuilder().build();
}
}

Build the Options object with values

import io.github.ollama4j.utils.Options;
import io.github.ollama4j.utils.OptionsBuilder;

public class Main {

public static void main(String[] args) {

String host = "http://localhost:11434/";

OllamaAPI ollamaAPI = new OllamaAPI(host);

Options options =
new OptionsBuilder()
.setMirostat(10)
.setMirostatEta(0.5f)
.setNumGpu(2)
.setTemperature(1.5f)
.build();
}
}