Skip to main content

Create Model

This API lets you create a custom model on the Ollama server.

Create a model from an existing Modelfile in the Ollama server

CreateModel.java
import io.github.ollama4j.OllamaAPI;

public class CreateModel {

public static void main(String[] args) {

String host = "http://localhost:11434/";

OllamaAPI ollamaAPI = new OllamaAPI(host);

ollamaAPI.createModelWithFilePath("mario", "/path/to/mario/modelfile/on/ollama-server");
}
}

Create a model by passing the contents of Modelfile

CreateModel.java
public class CreateModel {

public static void main(String[] args) {

String host = "http://localhost:11434/";

OllamaAPI ollamaAPI = new OllamaAPI(host);

ollamaAPI.createModelWithModelFileContents("mario", "FROM llama2\nSYSTEM You are mario from Super Mario Bros.");
}
}

Once created, you can see it when you use list models API.

Example of a Modelfile

FROM llama2
# sets the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# sets the context window size to 4096, this controls how many tokens the LLM can use as context to generate the next token
PARAMETER num_ctx 4096

# sets a custom system message to specify the behavior of the chat assistant
SYSTEM You are Mario from super mario bros, acting as an assistant.

Format of the Modelfile

# comment
INSTRUCTION arguments
InstructionDescription
FROM (required)Defines the base model to use.
PARAMETERSets the parameters for how Ollama will run the model.
TEMPLATEThe full prompt template to be sent to the model.
SYSTEMSpecifies the system message that will be set in the template.
ADAPTERDefines the (Q)LoRA adapters to apply to the model.
LICENSESpecifies the legal license.

PARAMETER

The PARAMETER instruction defines a parameter that can be set when the model is run.

ParameterDescriptionValue TypeExample Usage
mirostatEnable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)intmirostat 0
mirostat_etaInfluences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1)floatmirostat_eta 0.1
mirostat_tauControls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0)floatmirostat_tau 5.0
num_ctxSets the size of the context window used to generate the next token. (Default: 2048)intnum_ctx 4096
num_gqaThe number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70bintnum_gqa 1
num_gpuThe number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable.intnum_gpu 50
num_threadSets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores).intnum_thread 8
repeat_last_nSets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx)intrepeat_last_n 64
repeat_penaltySets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)floatrepeat_penalty 1.1
temperatureThe temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8)floattemperature 0.7
seedSets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. (Default: 0)intseed 42
stopSets the stop sequences to use. When this pattern is encountered the LLM will stop generating text and return. Multiple stop patterns may be set by specifying multiple separate stop parameters in a modelfile.stringstop "AI assistant:"
tfs_zTail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1)floattfs_z 1
num_predictMaximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context)intnum_predict 42
top_kReduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)inttop_k 40
top_pWorks together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)floattop_p 0.9

TEMPLATE

TEMPLATE of the full prompt template to be passed into the model. It may include (optionally) a system message and a user's prompt. This is used to create a full custom prompt, and syntax may be model specific. You can usually find the template for a given model in the readme for that model.

Template Variables

VariableDescription
{{ .System }}The system message used to specify custom behavior, this must also be set in the Modelfile as an instruction.
{{ .Prompt }}The incoming prompt, this is not specified in the model file and will be set based on input.
{{ .First }}A boolean value used to render specific template information for the first generation of a session.
TEMPLATE """
{{- if .First }}
### System:
{{ .System }}
{{- end }}

### User:
{{ .Prompt }}

### Response:
"""

SYSTEM """<system message>"""

SYSTEM

The SYSTEM instruction specifies the system message to be used in the template, if applicable.

SYSTEM """<system message>"""

ADAPTER

The ADAPTER instruction specifies the LoRA adapter to apply to the base model. The value of this instruction should be an absolute path or a path relative to the Modelfile and the file must be in a GGML file format. The adapter should be tuned from the base model otherwise the behaviour is undefined.

ADAPTER ./ollama-lora.bin

LICENSE

The LICENSE instruction allows you to specify the legal license under which the model used with this Modelfile is shared or distributed.

LICENSE """
<license text>
"""

Notes

  • the Modelfile is not case sensitive. In the examples, uppercase instructions are used to make it easier to distinguish it from arguments.
  • Instructions can be in any order. In the examples, the FROM instruction is first to keep it easily readable.

Read more about Modelfile: https://github.com/jmorganca/ollama/blob/main/docs/modelfile.md